
UNIT II

2.1 DIGITAL LOGIC CIRCUIT: DIGITAL COMPUTERS

 Digital computer is a digital system that performs various computational tasks.

 Digital means it is information that represents the values

 A digital computer has two digits 0 and 1.

 A binary digit is called a bit

 Information is represented in digital computer in a group of bits.

 The input-process-output concepts of the computer are:

 Input: The computer accepts input data from the user via an input device like

keyboard. The input data can be characters, word, text, sound, images, document, etc.

 Process: The computer processes the input data. For this, it performs some actions on

the data by using the instructions or program given by the user of the data. The action

could be an arithmetic or logic calculation, editing, modifying a document, etc.

During processing, the data, instructions and the output are stored temporarily in the

computer’s main memory.

 Output: The output is the result generated after the processing of data. The output

may be in the form of text, sound, image, document, etc. The computer may display

the output on a monitor, send output to the printer for printing, play the output, etc.

 Storage: The input data, instructions and output are stored permanently in the

secondary storage devices like disk or tape. The stored data can be retrieved later,

whenever needed.

 2.1.1 LOGIC GATES :

 Gates:

 Gates are logic circuits that performs the manipulation of binary information with one or more

inputs and a single output

 Gates are hardware that produce signals of binary 1 or 0

 It has distinct symbols and its operation can be described by means of logical expression

 Truth table:

 A truth table is a table that describes the behavior of a logic gate

 It lists the value of output for every possible combination of the inputs

 2.1.2 DEFINITION

 AND gate:

 AND gate has two or more inputs and only one output

 If both inputs are high the output is high

 If any one of the input is low the output is low

Symbol:

OR gate:

 OR gate has two or more inputs and only one output

 If one or more of its input is high the output is high

 If both the inputs are low the output is low

NOT gate or INVERTER:

 An inverter or not gate has only a single input and a single output signal

 It inverts or complements the given input

NAND gate: (NOT- AND)

 NAND gate has two or more inputs but only one output

 It produces the complement of AND output

 The output is high when any of the inputs are low and the output is low when all of its inputs

are high

NOR gate: (NOT- OR)

 NOR gate has two or more inputs but only one output.

 It produces the complement of OR

 The output is high only when all inputs are low and the output is low if any of the input is

high

EXCLUSIVE OR gate (XOR) :

 XOR gate has two or more inputs but only one output

 Output is high if one, and only one, of the inputs to the gate is high

 If both inputs are low or both inputs are high the output is low
 An encircled plus sign () is used to show the EOR operation.

 Symbol :

EXCLUSIVE NOR gate (XNOR):

 XOR gate has two or more inputs but only one output

 It produces the complement or inverse of XOR output

 Output is high if both of the inputs are the same
 The XOR gate with inputs A and B implements the logical expression A . B + A . B

 Symbol

 Truth table

2.2 BOOLEAN ALGEBRA :

 Boolean algebra is used to solve the logic problems by expressing the statements and

functions as symbols and then manipulating them to arrive at a result

 It is a switching algebra that deals with binary variables and logical operations.

 Consider

A+A’ = 1

A.A’ = 0

 ie (A+B)+(A+B)’=1 AND (A+B).(A+B)’=0

 (A+B)+(A’.B’)=1 AND (A+B).(A’.B’)=0

 2.2.1 BOOLEAN EXPRESSIONS

 Consider the following Boolean expressions

1. Simplify the Boolean expression

XY′Z′+XY′Z′W+XZ′

The above expression can be written as

XY′Z′ (1+W) +XZ′

=XY′Z′+XZ′ as 1+W=1

=XZ′ (Y′+1)

=XZ′ as Y′+1=1

2. Simplify the Boolean expression

X+X′Y+Y′+(X+Y′) X′Y

The above expression can be written as

X+X′Y+Y′+XX′Y+Y′X′Y

=X+X′Y+Y′ as XX′=0, and YY′=0

=X+Y+Y′ as X+X′Y=X+Y

=X+1 as Y+Y′=1

=1 as X + 1=1

3. Simplify the Boolean expression

Z(Y+Z) (X+Y+Z)

The above expression can be written as

(ZY+ZZ)(X+Y+Z)

= (ZY+Z) (X+Y+Z) as ZZ=Z

=Z(X+Y+Z) as Z+ZY=Z

=ZX+ZY+ZZ

=ZX+ZY+Z as ZZ=Z,

=ZX+Z as Z+ZY=Z

=Z as Z+ZX=Z

 DE MORGAN’S THEOREMS

De Morgan’s First Theorem:

Statement: It states that for any two elements A and B in Boolean Algebra, the complement of a

sum is equal to the product of complements.

 A + B = A . B

Logic circuit:

 A A

 Y Y

 B B

 A B Y=A + B

0 0 0

0 1 0

1 0 0

De Morgan’s Second Theorem:

Statement:

 It states that for any two elements A and B in a Boolean algebra, the complement of a

product is equal to the sum of complements

A . B = A + B

Logic circuit:

 A A

 B Y B Y

2.2.2 BASIC IDENTITIES

 Boolean algebra equations can be manipulated by following a few basic rules.

Manipulation Rules

 A + B = B + A

 A * B = B * A

 (A + B) + C = A + (B + C)

 (A * B) * C = A * (B * C)

 A * (B + C) = (A * B) + (A * C)

1 1 1 A B Y=A . B

0 0 0

0 1 0

1 0 0

1 1 1

 A B Y= A . B

0 0 1

0 1 1

1 0 1

1 1 0

 A B Y= A + B

0 0 1

0 1 1

1 0 1

1 1 0

 A + (B * C) = (A + B) * (A + C)

Equivalence Rules

 =

 A = A (double negative)

 A + A = A

 A * A = A

 _

 A * A = 0

 _

 A + A = 1

Rules with Logical Constants

 0 + A = A

 1 + A = 1

 0 * A = 0

 1 * A = A

2.2.3 DE MORGAN’S THEOREMS

 Example 1:

 Prove mathematically De Morgan’s Theorems: for any two elements A and B in Boolean

algebra

A+B = A . B

A.B = A + B

 Theorem 1: A+B = A . B

 Proof:

 We know that a + a = 1 and a. a = 0

 i.e (A+B) + A + B = 1 and (A + B). (A + B) = 0

 To Prove:

 (A+B) + A . B = 1 and (A + B). (A. B) = 0

Solution:

 (A+B) + A . B = {(A + B) +A} . {(A + B) + B}

 = {B+(A + A)} . { A + (B + B)}

 = (B+1) . (A+1)

 = 1 . 1

 = 1

And (A + B) . (A . B) = {A . (A . B)} + {B . (A . B)}

 = { (A. A) . B } + { (B . B) . A }

 = (0 . B) + (0 . A)

 = 0 + 0

 = 0

Theorem 2: A . B = A + B

Proof:

 We know that a + a = 1 and a. a = 0

 i.e., A . B + A . B = 1 and A . B . (AB) = 0

To Prove:

 A.B + (A + B) = 1 and A . B . (A + B) = 0

Solution:

 A . B + (A + B) = (A + B) + A . B

 ={ (A + B) + A} . {(A + B) +B }

 = (A + A + B) . (B + B + A)

 = (1 + B) . (1 + A)

 = 1

 And A . B . (A + B) = { (A . B) . A} + { (A . B) . B }

 = { (A . A) . B) } + { (B . B) . A)

 = (0 . B) + (0 .+ A)

 = 0

Example: prove the identities using Boolean algebra

(a) A . B + C . D = (A + C)(A + D)(B + C)(B + D)

 To Prove : AB + CD = (A + C)(A + D)(B + C)(B + D)

Solution :

 L.H.S = AB + CD = (AB) + C . D

 = (AB+C) . (AB + D)

 = (C + A . B) . (D + A . B)

 = (C + A) (C+ B) (D + A) (D+ B)

 = (A + C) (A + D) (B + C) (B + D)

 = R.H.S

(b) (A + BC + C) C = ABC + ABC + ABC

To Prove :(A + BC + C) C = ABC + ABC + ABC

Solution :

 L.H.S = (A + BC + C) C

 = AC + BCC + CC

 = AC + BC + 0

 = A(B+B) . C + (A+A) BC

 = ABC + ABC + ABC + ABC

 = ABC + ABC + ABC + ABC

 = ABC + ABC + ABC

 = R.H.S

(c) A (A + C) (AB + C) = 0

To Prove :A (A + C) (AB + C) = 0

Solution :

 L.H.S = A(A+C) . (AB + C)

 = (AA + AC) . (AB + C)

 = 0 + AC . (AB + C)

 = ACAB + ACC

 = AABC + A . CC

 = 0 . BC + A . 0

 = 0 + 0

 = 0

 = R.H.S

2.2.4 MAP SIMPLIFICATION:

KARNAUGH’S MAP

 The map method was proposed by E.W.Veitch and later modified by M.Karnaugh.

 This provides a simple set procedure for minimizing the switching function.

 This map method /pictorial representation of the truth table is called as Veitch-Karnaugh (V-

K) map or Karnaugh map.

 Made up of squares – each square represents one term.

 Each n variable map contains of 2n cells. (If n=3 then map contains 8 cells)

A three- variable Karnaugh Map A four – variable Karnaugh Map

Take 3-variable Karnaugh map : AB=01 C=0 so ABC = 010 whose decimal value = 2

AB – top values (00,01,11,10) C - down values (0,1)

Take 4-variable Karnaugh map : AB=01 CD=01 so ABCD=0101 whose decimal value= 5

AB – top values CD - down values (00,01,11,10)

CANONICAL FORM 1

Decima

l Value

A B C Minterm Maxterm

 AB

C

00 01 11 10

 0 0 2 6 4

 1 1 3 7 5

 AB

CD

00 01 11 10

 00 0 4 12 8

 01 1 5 13 9

11 3 7 15 11

10 2 6 14 10

0 0 0 0 A’ B’ C’ A+B+C

1 0 0 1 A’ B’ C A+B+C’

2 0 1 0 A’ B C’ A+B’+C

3 0 1 1 A’ B C A+B’+C’

4 1 0 0 A B’ C’ A’+B+C

5 1 0 1 A B’ C A’+B+C’

6 1 1 0 A B C’ A’+B’+C

7 1 1 1 A B C A’+B’+C’

 2.2.5 MINTERMS AND MAXTERMS FOR THREE VARIABLES

 Minterms :

 A product term which has each of the variables as factors in either complemented or

uncomplemented form is known as minterm.

 A function with n variables has 2n minterms

 A three-variable function, such as f(x,y,z), has 23 = 8 minterms.

 Any variable should be taken in uncomplemented form if it has the value ‘1’ and should

be taken in complemented form if it has the value ‘0’.

 For example 001 should be written as A B C

 Maxterms :

 A sum term which has each of the variables in either complemented or uncomplemented

form is known as maxterm.

 A function with n variables has 2n maxterms

 A three-variable function, such as f(x,y,z), has 23 = 8 maxterms.

 Any variable should be taken in uncomplemented form if it has the value ‘0’ and should

be taken in complemented form if it has the value ‘1’.

 For example 001 should be written as A+B+ C .

SUM OF PRODUCTS (SOP) :

 The switching function expressed as the sum of all the minterms for which the function

attains the value ‘1’ is called the Canonical Sum of Products (SOP) or disjunctive normal

expression.

 Σ denotes sum of product.

Consider the following truth table. The function attains the value in ‘1’ in 4 cases.

Therefore, SOP = (1, 2, 4, 7) // 1,2,4,7 have the output

1

 = 001+010+100+111

 f(A,B,C) = A B C + A BC + A B C +ABC

Product of Sum (POS):

 The expression expressed as product of all the maxterms for which the function attains

the value ‘0’ is known as the canonical product of sums (POS) or conjunctive normal

expression.

 π denotes product of sum.

 POS = (0, 3, 5, 6) // 0,3,5,6 have the output 0

 = 0, 3, 5, 6

 = (000) (011) (101) (110)

 = (A+B+C)(A+ B +C)(A +B+ C)(A + B +C)

FINDING THE CANONICAL SUM OF PRODUCTS (SOP) FORM FOR AN

EXPRESSION:

Step 1 : When any switching expression is to be expressed in canonical SOP forms, then each

term of the

 expression should be examined and if it is a minterm , then it should be kept as it is.

 Eg : AB C - all the 3 variables are present – so it is a minterm and hence kept as it is.

Step 2 : If any particular variable does not occur in any term, then for each variable A,B or C

which does

 not occur, multiply that term by (A+ A),(B+ B) or (C+ C) as the case may be.

Eg : A B – here C is missing so multiply this term by (C+ C).

 A B (C+C) = A B C + A B C

Decimal

Value

A B C f

 0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 1

5 1 0 1 0

6 1 1 0 0

7 1 1 1 1

Step 3 : Eliminate the repeated terms.

Example: Find the canonical SOP and POS for the given expression.

 f(A,B,C) = AB + A B +AC + A C

 f(A,B,C) = AB + A B +AC + A C

 = AB(C+ C) + A B (C+ C) +AC(B+ B) + A C (B+ B) (step 2)

 = AB C+ AB C + A B C+ A B C +AC B +AC B + A C B + A C B

Eliminating the repeated terms, we get (step 3)

 f(A,B,C) = AB C+ AB C + A B C+ A B C ++A B C+ A B C

 = 111 + 110 + 001+000+101+010

 = (7,6,1,0,5,2)

 SOP = (0,1,2,5,6,7)

 POS = Complement of SOP

 = (3,4)

 = (011,100)

 = (A + B +C)(A +B+C)

FINDING THE CANONICAL PRODUCT OF SUM (POS) FORM FOR AN

EXPRESSION:

Step 1 : When any switching expression is to be expressed in canonical POS forms, then each

term of the

 expression should be examined and if it is a maxterm , then it should be kept as it is.

 Eg : A+B+ C - all the 3 variables are present – so it is a maxterm and hence kept as it is.

Step 2 : If any particular variable does not occur in any sum term, then for each variable A,B or

C which

 does not occur, add that term by A A , B B or CC as the case may be.

Eg : A+ B – here C is missing so add this term by (C C).

 (A+ B +C C) = (A+ B +C) (A+ B +C)

Step 3 : Convert the sum terms into product of sums.

Step 4 : Eliminate the repeated terms.

Example : Find the canonical POS and SOP for the given switching functions.

 f(A,B,C) = (A).(B+ C)

 = (A +B B + CC).(B+ C + A A) (step 2)

 = ((A +B)(A + B)+ C C).(A+B+ C).(A +B+ C) (Step 3)

 = [((A +B)(A + B)+ C).((A +B)(A + B)+ C)] . [(A+B+C).(A +B+C)]

 = (A +B+C)(A + B +C) (A +B+ C)(A + B +C)(A+B+ C).(A +B+ C)

Eliminating the repeated terms, we get (step 4)

 POS = (A +B+C)(A + B +C) (A +B+ C)(A + B +C)(A+B+ C)

 = (100) (110) (101) (111) (001)

 = (4,6,5,7,1)

 = (1,4,5,6,7)

To get SOP , multiply each variable by the absent variable.

 f(A,B,C) = (A).(B+ C)

 = A B+ A C

 = A B(C+ C)+ A C (B+ B)

 = A BC+ A BC + A BC + A B C

 = A BC+ A BC + A B C (deleted A BC as it has repeated twice)

 = 011+010+000

 = (3,2,0)

 SOP = (0,2,3)

Example : From the truth table given below , express the function f in sum of minterms and

product of maxterms . Obtain the switching function f(A,B,C) in canonical SOP and POS from

and prove that they both minimize to same value.

Decimal value A B C f

0 0 0 0 1

1 0 0 1 1

2 0 1 0 0

3 0 1 1 0

4 1 0 0 1

5 1 0 1 1

6 1 1 0 0

7 1 1 1 0

Solution:

The decimal value for which the function f assumes value ‘1’ are 0,1,4,5

= (0,1,4,5)

f=000+001+100+101 = Sum Of Minterms

f(A,B,C) = A B C + A B C+A B C +A B C = SOP form

The above form can be minimized to

 = A B (C +C)+ A B (C+C) (Since (C+ C) = 1)

 = A B + A B

 = B (A+ A)

 = B .1 = B

The decimal value for which the function f assumes value ‘0’ are 2,3,6,7

 = (2,3,6,7)

 =(010)(011)(110)(111) = Product Of Maxterms

f(A,B,C) = (A+ B +C)(A+ B +C)(A + B +C)(A B C) = POS form

The above form can be minimized to

 = [(A+ B)(C+C)][(A + B)(C+ C)]

 = (A+ B)(A + B)

 = A A +A B + B A + B B

 = 0+ B (A+ A)+ B

 = B + B = B

Hence the minimization of both canonical SOP and POS gave the same value (B).

 KARNAUGH’S MAP – CONSTRUCTION AND PROPERTIES

 The Karnaugh map is a modified from of Venn diagram of a switching function with 4 or

less variables in the canonical SOP form.

 When a venn diagram is redrawn using rectangles and squares and complemented and

uncomplemented variables are represented by 0’s and 1’s, in the columns or rows which it

represents, then the diagram is called Karnaugh Map.

 Each square of K map is denoted by a binary number or its decimal number.

 If the function has n variables then there must be 2n squares. For example if there are 4

variables then the map has 24=16 squares.

 To construct a Karnaugh map of a switching function, first the function is represented in

the sum of products form.

 Example : f(A,B,C) = A B C + A B C+ A BC + A BC+ ABC

 = 000+001+010+011+111

 = (0,1,2,3,7)

The above function is represented on Karnaugh Map by marking the squares by ‘1’

 The decimal numbers are usually written in small numerals at the bottom right corner of the

squares representing a decimal number. Example : f(A,B,C,D) = (0,1,3,7,11,15)

 The simplification of the switching function can be done by combining the ‘1’ cells into pairs,

quartets and octets as the case may be.

 Minterms of adjacent squares in the map are identical except for one variable, which

appears complemented in one square and uncomplemented in the adjacent square.

 Eg : In the above K map take the first row - first two cells having the decimal value 0,4

i.e 0000 (A B C D)and 1000(A B C D) here only one variable ‘A’ appears

complemented in one square and uncomplemented in another square.

 According to this definition of adjacency

 The square of the extreme ends of the same horizontal row are adjacent. Eg :

0(0000), 8(1000)

 The square of the top and bottom squares of a column are adjacent. Eg :

0(0000), 2(0010)

 The four corner squares of a map are adjacent.

 Eg : 0000,1000 ,0010,1010 - i.e [0000,1000] [0000,0010] [1000, 1010]

[0010,1010]

Examples :

1. Simply the Boolean function f(A,B,C) = (3,4,6,7)

Solution

 Pairs are (6,4) and (3,7)

 Before minimization the function is written as A BC+A B C +AB C +ABC

 After minimization the function is written as BC+A C .

 6 is written as AB C and the adjacent square 4 is written as A B C . The common term

is AC .

 3 is written as A BC and the adjacent square 7 is written as ABC. The common term

is BC.

 Hence BC+A C .

To check :

f = (3,4,6,7)

 f = A BC+A B C +AB C +ABC

 = A BC+ABC+A B C +ABC (rearranged)

 = BC(A +A)+A C (B +B) = BC+A C .

2. Simplify the switching function f(A,B,C,D) = (0,1,2,3,8,9,10,11)

Solution

a. Simplification Using K Map :

 ‘1’ is marked in the respective squares.

 See the common variable in all these squares.

 In 0(0000), 1(0001), 2(0010), 3(0011) – the common variable

is A B

 In 8(1000), 9(1001), 10(1010), 11 (1011) – the common

variable is A B

 So A B + A B

 = B (A +A) = B

 The function in minimized form is B

b.Simplification using Boolean Algebra :

f = A B C D + A B C D+ A B C D + A B C D+A B C D +A B C D+A B C D +A B CD

= A B C (D +D)+ A B C(D +D)+ A B C (D +D)+ A B C(D +D)

 = A B (C +C)+ A B (C +C)

= B (A + A) = B .

IMPLICANTS :

 When a switching function of four or less than four variables is represented on a K map,

then the set of adjacent minterms or the simplified product term obtained by combining

the minterms of set are called implicants of the switching function

 Prime-Implicant : An implicant is called a prime-implicant of the switching function if

it is not a subset of any other implicant of the switching function.

 Essential Prime-Implicant : A prime-implicant which includes a ‘1’ cell , which is not

included in any other prime-implicant , on the K map, is known as an essential prime-

implicant of the switching function.

MINIMIZATION IN SOP FORM USING KARNAUGH MAP :

1. Minimize the Boolean function f (A,B,C)= A B C + A B C + A BC using K map.

Solution :

f (A,B,C)= A B C + A BC + A B C

 = 000+010+011

 = (0,2,3)

 Mark ‘1‘is made in 3 cells.

 Take first row (0,2) , the two cells are adjacent. The value is 000 and 010, only variable

B appears complemented in 0(000) and uncomplemented in 2(010). Hence this can be

written as A C (common terms).

 Take second column (2,3), the two cells are adjacent as only one variable (C) appears

complemented in one and uncomplemented in another. Hence this can be written as A B

(common terms).

 Thus the Boolean function A B C + A B C + A B C is minimized to A C + A B.

2. Minimize the Boolean function f (A,B,C)= A B C + A B C + A B C +ABC using K map.

Solution :

f (A,B,C)= A B C + A BC + A B C +ABC

 = 000 + 010 +100+110

 = (0,2,4,6)

‘1’ is marked in the first row.

 The cells are adjacent . The common term is C and the terms that appears complemented and

uncomplemented forms are A and B.

 Thus the Boolean function

 A B C + A B C + A B C +AB C is minimized to C .

3. Minimize the Boolean function f (A,B,C,D)= (1,3,6,7,9,13,14,15)

Solution :

 Adjacent minterms are combined to form the following sub- cubes.

(1,3) (13,9) (6,7,14,15)

 (1,3) can be represented as A B D (common terms in representing 0,3)

 (13,9) can be represented as A C D

 (6,7,14,15) can be represented as BC

 Thus the Boolean function

 f (A,B,C,D) is minimized to A B D + A C D + BC.

MINIMIZATION IN POS FORM USING KARNAUGH MAP :

1. Obtain the minimal POS expression for the switching function given below using K map

. f (A,B,C,D)= (1,2,4,5,6,7,8,9,10,11,13,14)

Solution :

 First form the sub-cubes by combining the adjacent max terms .

(4,5,7,6) (8,9,10,11) (1,5,9,13) (2,6,14,10)

 Consider (4,5,6,7) – the common terms are A+ B

 Here the value of variable C and D changes.

 (8,9,10,11) indicates A +B

 (1,5,9,13) indicates C + D

 (2,6,14,10) indicates C +D

 Thus the minimal POS expression for the switching function is given by the product of

above four sum terms as

f (A,B,C,D)= (A+ B)(A +B)(C + D)(C +D)

2.2.6 DON’T CARE COMBINATIONS:

 When the variables are not mutually independent, the function may assign ‘1’ for some

combinations and ‘0’ for other combinations.

 The combinations for which the value of the function is not specified with certainity is

called don’t care combinations.

 These values are denoted by or D on K map.

 Example : Consider the following Boolean function together with the don’t-care

minterms :

 f (A,B,C) = (0,2,6)

 d (A,B,C) = (4,5)

 The 1’s and ’s are combined to enclose the maximum number of adjacent squares.

 The simplified expression is C

 If the don’t care minterms are not included the simplified expression will be A C +

AB C

 Thus the expression C represents the Boolean function f (A,B,C) = (0,2,4,6)

Example : Minimize the multiple – output switching function given below, using a four- variable

K map.

f(A,B,C,D)= (1,2,6,7,8,13,14,15) +

(3,5,12)

Solution :

 Sometimes certain designs require only some minterms to be defined and few other can

be either ‘0’s or ‘1’s.

 The terms represented are called unspecified states.

